Option Algèbre et Calcul Formel Examen M2

P. -V. Koseleff

Examen Master 2, Parcours Agrégation Option C

Mardi 18 avril 2017. CORRIGE.

Exercice 1.1. — Nombre d'or modulo p

- 1. On a $\left(\frac{5}{p}\right) = (-1)^{\frac{(5-1)(p-1)}{4}} \left(\frac{p}{5}\right) = \left(\frac{p}{5}\right)$. Les carrés de $(\mathbb{F}_5)^*$ sont ± 1 , d'où le résultat.
- 2. Si p = 5 alors $P = (X 3)^2$. Si p = 2, $P = X^2 + X + 1$ est irréductible. Sinon, P = (X 1/2) 5/4. P est scindé si et seulement si $p = \pm 1 \pmod{5}$. Puisque p est impair alors $p = \pm 1 \pmod{10}$.
- 3. (a) p est impair et premier avec 10 donc $p \equiv \pm 3 \pmod{10}$.
 - (b) Il suffit de prendre une racinde de Φ_{10} qui est irréductible dans $\mathbb{F}_p[X]$. Sinon, si $p \equiv \pm 3 \pmod{10}$, alors $10|p^2+1|p^4-1$. Une extension de degré 4 de \mathbb{F}_p contient une racine d'ordre 10.
 - (c) β est d'ordre 10 donc β^5 est d'ordre 2 et $\beta^5 = -1$.
- 4. (a) On $\alpha^2 \alpha 1 = (\beta + 1/\beta)^2 (\beta + 1/\beta) = (\beta^4 \beta^3 + \beta^2 \beta + 1)/\beta^2 = 0$. Donc α est racine de P.
 - (b) On a toujours $(x+y)^p \equiv x^p + y^p \pmod{p}$, donc $\alpha^p = (\beta + \beta^{-1})^p = \beta^p + \beta^{-p} = \beta^{\pm 3} + \beta^{\mp 3} \arctan{\beta^{10}} = 1$. Donc $\alpha^p = \beta^3 + \beta^{-3} = \beta^3 - \beta^2 \arctan{\beta^5} = -1$.
 - (c) On a alors $\alpha^{p+1} = (\beta^3 \beta^2)(\beta + \beta^{-1}) = -1$.

Exercice 1.2. — Suite de Fibonacci

- 1. On sait que $F_n = \lambda \varphi^n + \mu (-1/\varphi)^n \sim \lambda \varphi^n$. Mais alors $\log F_n \underset{n \to \infty}{\sim} n \log \varphi$.
 - (a) Démonstration par récurrence sur n. Si $(u_n, v_n) = (F_{n+1}, F_n)$ alors $u_{n+1} = F_{n+2}$ et $v_{n+1} = u_n = F_{n+1}$.
 - (b) On peut calculer $u_{k+1} = u_k + v_k$ en additionnant deux entiers de taille O(k) donc en $K \cdot k = O(k)$ opérations binaires. On calcule le couple (u_n, v_n) en $\sum_{k=1}^n K \cdot k = O(n^2)$ opérations. On peut calculer F_n en $O(n^2)$ opérations binaires.
- 2. On peut calculer la suite $(u_n \pmod{p}, v_n \pmod{p})$ en n additions dans \mathbb{F}_p , donc en $O(n \log p)$ opérations.
- 3. (a) Si p = 2, on obtient 0, 1, 1, 0, 1, donc $(f_3, f_4) = (f_0, f_1)$. f_n est de période 3.
 - (b) Si p = 5, on obtient 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, donc $(f_{20}, f_{21}) = (f_0, f_1)$. f_n est de période 20.
 - (c) Si p = 11, on obtient 0, 1, 1, 2, 3, 5, 8, 2, 10, 1, 0, 1, donc $(f_{10}, f_{11}) = (f_0, f_1)$. f_n est de période 10.
 - (d) Si p = 3, on obtient 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, donc $(f_8, f_9) = (f_0, f_1)$. f_n est de période 8.
- 4. (a) Posons $g_n = \frac{\alpha}{\alpha^2 + 1} \left(\alpha^n (-1)^n \alpha^{-n} \right)$. On a alors $g_0 = 0$ et $g_1 = \frac{\alpha}{\alpha^2 + 1} (\alpha + \alpha^{-1}) = 1$. D'autre part g_n vérifie la même relation de récurrence que f_n donc $f_n = g_n$ pour tout n (par récurrence immédiate).
 - (b) On peut calculer α^n et α^{-n} en $O(\log n)$ opérations arithmétiques dans \mathbb{F}_p , en utilisant l'exponentiation dichotomique. Donc en $O(\log n(\log p)^2)$) opérations binaires.
- 5. (a) En utilisant la question précédente, α^n est périodique (de période divisant p-1 si $p \equiv \pm 1 \pmod{10}$ et de période divisant 2(p+1) si $p \equiv \pm 3 \pmod{10}$, ou de période finie dans les autres cas (p=2,5).
 - (b) Soit T = (p-1) ou T = 2(p+1). Pour calculer f_n , il suffit de calculer $m = n \pmod{T}$ en $O(\log n \log T) = O(\log n \log p)$ opérations binaires puis f_m en $O(m \log p) = O(T \log p) = O(p \log p)$ opérations binaires.

Examen M2 2

Exercice 1.3. — Inégalité de Hadamard

- 1. *M* est une matrice symétrique positive donc $(x|Mx) \ge 0$.
 - (a) On a $(e_i|Me_i) = M_{i,i} \ge 0$.
 - (b) $M \ge 0$ donc $0 \le \det M$. M est diagonalisable de valeurs propres réelles positives $\lambda_1, \dots, \lambda_n$. Si $\det M = 0$, l'inégalité est vraie, sinon $-\ln$ est convexe donc

$$-\ln(\sum_{i=1}^{n}\lambda_{i}) \leq \sum_{i=1}^{n}-\frac{1}{n}\ln\lambda_{i}$$

soit, en prenant $x \mapsto \exp(-x)$, qui est décroissante : $\frac{1}{n}$ tr $M \ge (\prod \lambda_i)^{1/n}$, ie

$$\det M \le \left(\frac{\operatorname{tr} M}{n}\right)^n.$$

- 2. (a) Puisque M est définie positive, on a $M_{i,i} > 0$. On peut donc choisir $D_{i,i} = M_{i,i}^{-1/2}$.
 - (b) On a $D = {}^tD$. Calculons $\operatorname{Tr}({}^tDMD) = \sum (e_i|{}^tDMDe_i) = \sum_i (De_i|MDe_i) = \sum_i D_{i,i}^2(e_i|Me_i) = n$.
 - (c) $DMD = {}^tDMD$ est symétrique et tr $DMD \le n$. Donc $\det M(\det D)^2 = \det DMD \le 1$, d'où le résultat.
 - (d) $M = {}^{t}AA$ est une matrice symétrique positive et on obtient

$$(\det A)^2 = \det M \le \prod_i ||A_i||_2^2.$$

- 3. $\Phi: \mathbb{Q}_{m-1}[X] \times \mathbb{Q}_{n-1}[X] \rightarrow \mathbb{Q}^{n+m-1}[X]$ $(P,Q) \mapsto PA + QB$
 - (a) Soit $D = \operatorname{pgcd}(A, B)$ unitaire dans $\mathbb{Q}[X]$. Les solutions de AP + BQ = 0 sont exactement $(P, Q) = \lambda(B/D, -A/D)$, où $\lambda \in \mathbb{Q}[X]$. On conclut en considérant les degrés.
 - (b) Φ est un isomorphisme si et seulement si $\operatorname{pgcd}(A,B)=1$, donc s'il existe une unique solution (U,V) à $\Phi(U,V)=1$.
 - (c) Dans la base $(X^{m-1},0),\cdots,(1,0),(0,X^{n-1}),\cdots,(0,1)$ au départ et $(X^{n+m-1},\ldots,1)$ à l'arrivée, la matrice de Φ est la transposée de

$$M = \begin{pmatrix} a_n & a_{n-1} & \cdots & \cdots & a_0 & 0 & \cdots & 0 \\ 0 & a_n & \cdots & & \cdots & a_0 & 0 & 0 \\ \vdots & & \ddots & \ddots & & & \ddots & \vdots \\ & & a_n & \cdots & & \cdots & a_0 \\ b_m & b_{m-1} & \cdots & \cdots & b_0 & 0 & \cdots & \cdots & 0 \\ 0 & b_m & \cdots & \cdots & b_0 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & & \ddots & \vdots \\ 0 & \cdots & & \cdots & b_m & \cdots & \cdots & b_0 \end{pmatrix}$$

On déduit alors, en considérant les lignes de M, que $\det M \leq \|A\|_2^m \cdot \|B\|_2^n$. Notez qu'il s'agitdu résultant de A et B.

En utilisant les formules de Cramer, pour la résolution du système $\Phi(U,V) = (0,\ldots,0,1)$, on obtient $U_i = \det M_i / \det M$, $i = 1,\ldots,m$, où M_i est obtenu en remplaçant la i-ème colonne de M par $t(0,\ldots,0,1)$.

Mais alors $|\det M_i| \le ||A||_2^{m-1} ||B||_2^n$.

Au final le dénominateur des coefficients de U et de V est majoré par $\det M = \|A\|_2^m \cdot \|B\|_2^m$, les numérateurs de ceux de U par $\|A\|_2^{m-1} \cdot \|B\|_2^n$ et ceux de V par $\|A\|_2^m \cdot \|B\|_2^{n-1}$